HYDRODYNAMIC FLOW STABILITY OF A FLUID
WITH A POWER-LAW RHEOLOGICAL BEHAVIOR
IN A CHANNEL WITH ELASTIC WALLS
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and 8. L. Simkhovich

The stability of steady gradiental flow of a non-Newtonian fluid with a power-law rheological
behavior in a channel with elastic walls is analyzed.

With regard to certain problems in biomechanics and polymer physics, the authors of [1, 2] have
studied the hydrodynamic stability of steady flow modes of non-Newtonian fluids. They considered the
stability of flow in channels with undeformable walls. It would be of interest to consider the stability of
flow of such fluids in channels with elastic walls and to analyze how the critical Reynolds number is af-
fected by the elastic properties of such walls.

We consider the gradiental flow of a fluid with a power-law rheological behavior in a flat channel.
The distribution of the dimensionless velocity is in this case [3]
-l
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with n denoting the rheological parameter of the system. The problem of stability here in response to
infinitesimally small two-dimensional perturbations reduces to that of universal Orr—Sommerfeld equa-
tion [1].

The first pair of linearly independent solutions #; , is sought in the form of series, following the
general procedure [1, 4], with the aid of the recurrence relations for the coefficients [5]. The second pair
of linearly independent terminating solutions ¢; , is

’i:l
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Here y, denotes the critical point where the flow velocity is equal to the perturbation velocity and Re

= pU%BLY/ky, is the universal Reynolds number.

The general solution to the universal Orr—Sommerfeld equation will be sought as a superposition of
the linearly independent solutions:

4
P (y) == 2 Ci;, 3
=l

with the arbitrary constants Cj.

In order to find the eigenvalues of the Orr—Sommerfeld equation, it is necessary to establish the
boundary conditions of the problem, We will consider only normal strains of the channel walls, since cal-
culations have shown that tangential strains have a negligible effect on the flow stability — just as in the
case of a Newtonian fluid [6].

In the case of small normal displacements, the strain—stress relation for an elastic wall can be
written as follows:
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Fig. 1. Curves of neutral stability for n = 0.7 and 1.5 at 8 = 7/6
and with k=0, 0.3, 0.6, 0.9.

Fig. 2. Relation between Reéé? and parameter k for n = 0.7, 1.0,
1.5at 6 = n/6.
¢ = kpe'®. (4
Here ¢ denotes the normal displacement of a wall surface.

Differentiating (4) with respect to time and expressing all quantities in terms of perturbations, with
the equation of flow properly taken into account, we obtain the following boundary conditions at a wall:

_ KenDUPE (1) 4 e — keDU (— 1)1 (—1)

i Re
_pu Uy Fre=D) ey arp (1)1 =0, (5)
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W (—1) =0,

It is to be noted that, when n = 1, expressions (5) become the corresponding boundary conditions for
a Newtonian fluid [6].

The second pair of boundary conditions, at the center of the channel y = 0, needed for solving the
universal Orr—Sommerfeld equation are found as follows [5].

For dilatant fluid (n > 1) DU(0) = 0. Therefore, the terminating solutions zp3,4(0) = 0 and their deri-
vatives Dy; 4(0) are singular. The singularity in the derivative of the general solution (3) at point y = 0
is removable, if the condition

C3Dp; (0) + CyDrp, (0) = 0. . (6)
is satisfied.

The condition of even-numbered perturbations at point y = 0
4
3 ¢y, =0 ™
i=1

together with conditions (5) and (6), yield a secular equation which, with all terms ranked according to their
orders of magnitude, can be written as
P1(— 1) P (1)
b1 D (©) Dp(0) | ke? ) ®
Dy (—1)  [Dpy(—1) Dy(—1)| le®—kcDU(—1)]
Dy, (0) D, (0)

The left-hand side of Eq. (8) can be expressed in terms of the tabulated Titjens function [4]; the
right-hand side of Eq. (8) can be evaluated on the basis of the solutions given here earlier.

A stability analysis of pseudoplastic fluids can, in the final count, also be reduced to finding the
eigenvalues of the secular equation (8).
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Some results of calculations made for walls with compliance in the normal direction are shown in
Figs. 1 and 2.

The curves in Fig. 1 depict the neutral stability for n = 0.7 and 1.5, at various values of the param-
eter k with 6 = n/6.

The curves in Fig. 2 depict the universal critical Reynolds number as a function of k, for n = 0.7,
1.0, 1.5and 0 = 1/6. At a given phase shift, according to this graph, the universal critical Reynolds num-
ber is a monotonic function of k. Such a trend is explainable in terms of the energy flux transmitted from
the mainstream to an elastic wall. This flux is W = —pu ~ kp2 sing, i.e., proportional to k and, therefore,
there must be some monotonic relation between the flow stability and the parameter k. For a given value
of k, moreover, the critical Reynolds number decreases with higher values of n. This can be explained
as follows. As is well known, the flow stability depends on the shape of the velocity profile and thus, in
the final analysis, the Reynolds stresses influence the mechanism of energy transfer from the mainstream
to the perturbations. A flatter velocity profile will be more stable [7, 8]. Since the velocity profile (1)
becomes flatter for lower values of n, hence one should obviously expect the critical Reynolds number to
become higher as the value of n decreases (with all other conditions unchanged).

NOTATION

n and ky are the rheological parameters of a fluid;
xandy are Cartesian coordinates;
U(y) is the velocity profile;
D = d/dy is the differential operator;
o is the wave number;
c is the velocity of perturbation propagation;
L is the channel half-width; ;
Uy is the characteristic velocity;
P{y) is the amplitude of the flow-perturbation function;
P is the variable component of pressure on a wall;
k is a parameter which characterizes the elastic properties of a wall;
] is the phase shift between stresses and strains in a wall.
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